To determine the angle of refraction we can use Snell's law:
[tex]n_1\sin\theta_1=n_2\sin\theta_2[/tex]For the problem given we know that:
[tex]\begin{gathered} n_1=1.33 \\ \theta_1=43.4 \\ n_2=1\text{ \lparen The refactive index of air is one\rparen} \end{gathered}[/tex]Plugging these values and solving for the second angle we have:
[tex]\begin{gathered} 1.33\sin43.4=1\sin\theta_2 \\ \theta_2=\sin^{-1}(1.33\sin43.4) \\ \theta_2=66.04 \end{gathered}[/tex]Therefore, the light refracts through the air with an angle 66.04°