Respuesta :

Given;

[tex]x^3+2x^2=16x+32[/tex]

To find: The equation in factored form and solution set.

Explanation:

Given equation can be written as

[tex]x^3+2x^2-16x-32=0[/tex][tex]\begin{gathered} \text{When x=-2, The equation becomes,} \\ -8+8+32-32=0 \\ 0=0 \\ \text{Then (x+2) is a factor of given equation.} \end{gathered}[/tex]

By using the factor (x+2), We proceed with the synthetic division

[tex]\begin{gathered} x^3+2x^2-16x-32=0 \\ (x+2)(x^2-16)=0 \\ (x+2)(x^2-4^2)=0 \\ (x+2)(x+4)(x-4)=0 \end{gathered}[/tex]

Therefore, the equation is factored form:

[tex](x+2)(x+4)(x-4)=0[/tex]

Then the solution set is

[tex]\mleft\lbrace-2,-4,4\mright\rbrace[/tex]

Ver imagen AyomideA106626