Exercise 3.3 - Enhanced - with FeedbackA web page designer creates an animation in which adot on a computer screen has positionPart Ar = [4.0 cm + (2.5 cm/s^2) t^2] i + (5.0 cm/s) tjFind the magnitude of the dot's average velocity between t = 0 and t = 2.0 s.Express your answer with the appropriate units.КА?pore ValueUnitsSubmitRequest AnswerPart BFind the direction angle of the dot's average velocity between t = 0 and t = 2.0 s. The angle is measured counterclockwise from+x-axis toward the +y-axis.Express your answer in degrees.

Respuesta :

Gievn:

[tex]r^{\prime}^{\prime}=\lbrack4.0\operatorname{cm}+(2.5\operatorname{cm}/s^2)t^2\rbrack\text{ i +(5.0cm/s)tj}[/tex]

Part A.

Let's find the magnitude of the dot's average velocity between t = 0 and t = 2.0s.

At t = 0:

Substitute 0 for t

[tex]\begin{gathered} r_1=\lbrack4.0\operatorname{cm}+(2.5\operatorname{cm})0^2\rbrack i+(5.0\operatorname{cm})(0)j \\ \\ r_1=4.0\operatorname{cm}i+0\operatorname{cm}j \end{gathered}[/tex]

At t = 2:

Substitute 2 for t

[tex]\begin{gathered} r_2=\lbrack4.0\operatorname{cm}+(2.5\operatorname{cm})2^2\rbrack i+(5.0\operatorname{cm})(2)j \\ \\ r_2=\lbrack4.0\operatorname{cm}+10.0\operatorname{cm}\rbrack i+10.0\operatorname{cm}j \\ \\ r_2=14.0\operatorname{cm}i+10.0\operatorname{cm}j \end{gathered}[/tex]

To find the magnitude of the dot's average velocity, apply the formula:

[tex]\begin{gathered} V_{ar}=|\frac{r_2-r_1}{t_2-t_1}| \\ \\ V_{ar}=|\frac{(14.0\operatorname{cm}i+10.0\operatorname{cm}j)-(4.0\operatorname{cm}i+0\operatorname{cm}j)}{2-0}| \\ \\ V_{ar}=|\frac{14.0\operatorname{cm}i-4.0\operatorname{cm}i+10.0\operatorname{cm}j-0\operatorname{cm}j}{2-0}| \\ _{} \\ \\ V_{ar}=|\frac{10.0\operatorname{cm}i+10.0\operatorname{cm}j}{2}| \\ \\ V_{ar}=|\frac{10.0\operatorname{cm}i}{2}+\frac{10.0\operatorname{cm}j}{2}| \\ \\ V_{ar}=|5.0\operatorname{cm}i+5.0\operatorname{cm}j| \\ \\ V_{ar}=\sqrt[]{5^2+5^2} \\ \\ V_{ar}=\sqrt[]{25+25} \\ \\ V_{ar}=\sqrt[]{50} \\ \\ V_{ar}=7.1\operatorname{cm}\text{ /s} \end{gathered}[/tex]

Therefore, the magnitude of the dot's average velocity is approximately 7.1 cm/s.

Part B.

FInd the direction angle of the dot's average velocity between t = 0s and t = 2.0 s.

To find the direction angle between t = 0s and t = 2.0s, we have:

[tex]\begin{gathered} \tan V_{ar}=\frac{25}{25} \\ \\ \tan V_{ar}=1 \end{gathered}[/tex]

Take the inverse tangent of both sides:

[tex]V_{ar}=\tan ^{-1}(1)=45^{\circ}[/tex]

Therefore, the direction of the dot's average velocity between t = 0 and t = 2.0 s is 45 degrees.

ANSWER:

• a) 7.1 cm/s

• b) 45 degrees.