Respuesta :

Given that the predicted value is 227 while the actual value is 250.

1.

The difference is calculated as,

[tex]\begin{gathered} \text{ Difference }=\text{ Actual Value}-\text{ Predicted Value} \\ \text{ Difference }=250-227 \\ \text{ Difference }=23 \end{gathered}[/tex]

Thus, the difference is 23.

2.

Consider the equation,

[tex]\text{ Difference}=\text{ percent error}\cdot\text{ Actual Value}[/tex]

Substitute the values,

[tex]23=p\cdot250[/tex]

This is the required equation.

3.

Solve the equation obtained above for the variable 'p' as,

[tex]\begin{gathered} p=\frac{23}{250} \\ p=0.092 \end{gathered}[/tex]

Thus, the value of 'p' is obtained as 0.092.

4.

The value of 'p' in percentage can be obtained as,

[tex]\begin{gathered} p(\text{percent})=0.092\cdot100 \\ p(\text{percent})=9.2 \end{gathered}[/tex]

Thus, the value of percentage error is 9.2%.