Respuesta :

Given data:

* The equation of the wave is,

[tex]y=4\sin (18t-10x)[/tex]

Solution:

From the equation of the wave, the angular velocity and the value of propagation constant is,

[tex]\begin{gathered} \text{angular velocity }\omega=18\text{ radian/second} \\ \text{Propagation constant k =10 radian/meter} \end{gathered}[/tex]

The value of the velocity of propagation is,

[tex]\begin{gathered} v=\frac{18}{10} \\ v=1.8\text{ m/s} \end{gathered}[/tex]

Thus, the velocity of the propagation of wave is 1.8 m/s.