If n is a positive integer, n factorial denoted by n! is a product of all positive integers less than or equal to n.
[tex]n!=n(n-1)(n-2)\cdot...\cdot(2)(1)[/tex]For example:
[tex]4!=4\cdot3\cdot2\cdot1=24[/tex]In this case, we have:
[tex]\begin{gathered} \frac{6!\cdot5!}{8!\cdot2!}=\frac{(6\cdot5\cdot4\cdot3\cdot2\cdot1)(5\cdot4\cdot3\cdot2\cdot1)}{(8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)(2\cdot1)} \\ \frac{6!\cdot5!}{8!\cdot2!}=\frac{5\cdot4\cdot3}{8\cdot7} \\ \frac{6!\cdot5!}{8!\cdot2!}=\frac{5\cdot4\cdot3}{4\cdot2\cdot7} \\ \frac{6!\cdot5!}{8!\cdot2!}=\frac{15}{14} \end{gathered}[/tex]Answer[tex]\frac{6!\cdot5!}{8!\cdot2!}=\frac{15}{14}[/tex]