What is the length of YZ?X17 cm8 cmZYa) 9 cm•b) 15cmc) 19cmd) 25 cm

The triangle given in the problem is a right triangle. Given its hypotenuse c and the length of one side a, the other side of the triangle can be computed using the Pythagorean theorem wherein
[tex]\begin{gathered} c^2=a^2+b^2 \\ b^2=c^2-a^2 \\ b=\sqrt[]{c^2-a^2} \end{gathered}[/tex]Just substitute the value of c (hypotenuse) and a (length of one side) on the equation above and compute, we get
[tex]\begin{gathered} b=\sqrt[]{(17cm)^2+(8cm)^2_{}} \\ b=\sqrt[]{289cm^2+64cm^2} \\ b=\sqrt[]{353cm^2} \\ b=18.79\operatorname{cm}\approx19\operatorname{cm} \end{gathered}[/tex]Hence, the length of the other side of the right triangle is 19 cm.
Answer: c) 19 cm