Respuesta :

Solution:

Given the circle with center A as shown below:

The plane travels 120 feet counterclockwise from B to C, thus forming an arc AC.

The length of the arc AC is expressed as

[tex]\begin{gathered} L=\frac{\theta}{360}\times2\pi r \\ \text{where} \\ \theta\Rightarrow angle\text{ (in degre}e)\text{subtended at the center of the circle} \\ r\Rightarrow radius\text{ of the circle, which is the }length\text{ of the control line} \\ L\Rightarrow length\text{ of the arc AC} \end{gathered}[/tex]

Given that

[tex]\begin{gathered} L=120\text{ f}eet \\ \theta=80\degree \\ \end{gathered}[/tex]

we have

[tex]\begin{gathered} L=\frac{\theta}{360}\times2\pi r \\ 120=\frac{80}{360}\times2\times\pi\times r \\ cross\text{ multiply} \\ 120\times360=80\times2\times\pi\times r \\ \text{make r the subject of the equation} \\ \Rightarrow r=\frac{120\times360}{2\times\pi\times80} \\ r=85.94366927\text{ fe}et \end{gathered}[/tex]

Hence, the length of the control line is 85.94366927 feet.

Ver imagen MajesticR505977