Respuesta :

Given the terminal point of Θ:

[tex](\frac{1}{2},\frac{\sqrt[]{3}}{2})[/tex]

Let's find the value of Θ.

In polar coordinates, we have the points as

[tex]P=(R,\theta)[/tex]

Where:

R is the radius and Θ is the angle.

We know in rectangular coordinates, we have:

x = R * cosΘ

Y = R * sinΘ

Thus, to find the value of Θ, we have:

[tex]\sin \theta=\frac{\sqrt[]{3}}{2}[/tex]

Solve for Θ.

[tex]\begin{gathered} \\ \text{sin}\theta=\frac{\sqrt[]{3}}{2} \\ \end{gathered}[/tex]

Take the inverse cosine of both sides:

[tex]\begin{gathered} \theta=\sin ^{-1}(\frac{\sqrt[]{3}}{2}) \\ \\ \theta=\frac{\pi}{3} \end{gathered}[/tex]

ANSWER:

[tex]C.\text{ }\frac{\pi}{3}radians[/tex]