Respuesta :

The values for Δx_k are:

[tex]\begin{gathered} (2-0)=2 \\ (3-2)=1 \\ (5-3)=2 \end{gathered}[/tex]

So, now we will use the right endpoints of each interval to find the c_k values: 2,3 and 5.

And f(c_k):

[tex]\begin{gathered} 2^2+2=4+2=6 \\ 3^2+2=9+2=11 \\ 5^2+2=25+2=27 \end{gathered}[/tex]

So each term in the Riemann sum is:

[tex]\begin{gathered} (6\times2)=12 \\ (11\times1)=11 \\ (27\times2)=54 \end{gathered}[/tex]

Adding them together:

[tex]V=12+11+54=77[/tex]

The value V is 77.