Respuesta :

Answer: [tex]P\left(B|A\right)\text{ = 0.68}[/tex]

Explanation:

Given:

P(A) = 0.31

P(B) = 0.48

P(A and B) = 0.21

To find:

P(B|A)

The conditional probability P(B|A) is given as:

[tex]\begin{gathered} P\left(B|A\right)=\text{ }\frac{P(B\text{ and A\rparen}}{P(A)} \\ \\ P\left(B|A\right)=\text{ }\frac{P(A\text{ and B\rparen}}{P(A)} \end{gathered}[/tex][tex]\begin{gathered} P\left(B|A\right)\text{ = }\frac{0.21}{0.31}\text{ = 0.6774} \\ \\ P\left(B|A\right)\text{ = 0.68} \end{gathered}[/tex]