A prism has congruent parallelograms for bases. One pair of parallel sides of the parallelogram measure 12 feet and are 5 feet apart. The altitude of the prism is 13 feetFind the volume of the prism.

The volume of the prism can be gotten using the formula
[tex]\begin{gathered} V_{\text{PRISM}}=\text{Base area}\times perpendicularheight \\ \text{the base is a parallelogram} \\ \text{Base area=base}\times height \\ \text{Base}=12ft \\ \text{height}=5ft \\ \text{perpendicular height=13ft} \end{gathered}[/tex]By substitution, we will have
[tex]\begin{gathered} V_{\text{PRISM}}=12ft\times5ft\times13ft \\ V_{\text{PRISM}}=780ft^3 \end{gathered}[/tex]Hence,
The volume of the prism is 780 cubic feet