We have that s varies inversely as G.
Then, we have the next equation:
[tex]S=\frac{k}{G}[/tex]If S= 5 when G=2.4
Then:
[tex]\begin{gathered} 5=\frac{k}{2.4} \\ Solve\text{ for k} \\ k=12 \end{gathered}[/tex]Where k represents the constant.
If G=6, we need to find S using k = 12.
Therefore:
[tex]\begin{gathered} S=\frac{12}{6} \\ S=2 \end{gathered}[/tex]Hence, If G=6, then S=2.