1. Use the equation 2m+4s=16 to complete this following table:2. Graph the line using s as the dependent variable.

Explanation
Step1
isolate m
[tex]\begin{gathered} 2m+4s=16 \\ subtract\text{ 4s in both sides} \\ 2m+4s-4s=16-4s \\ 2m=16-4s \\ \text{divide both sides by 2} \\ \frac{2m}{2}=\frac{16}{2}-\frac{4s}{2} \\ m=8-2s\rightarrow equation \end{gathered}[/tex]Step 2
now, replace
a)when m=0
[tex]\begin{gathered} m=8-2s \\ 0=8-2s \\ 2s=8 \\ \text{divide both sides by 2} \\ \frac{2s}{2}=\frac{8}{2} \\ s=4 \end{gathered}[/tex]so, in the first box put 4.
b)when s=3
[tex]\begin{gathered} m=8-2s \\ m=8-2(3) \\ m=8-6 \\ m=2 \end{gathered}[/tex]so, when s=3, m=2
put 2 in the next box
c)when m=-2
[tex]\begin{gathered} m=8-2s \\ -2=8-2s \\ -2-8=-2s \\ -10=-2s \\ s=\frac{-10}{-2}=5 \\ s=5 \end{gathered}[/tex]then, when m=-2, s=5
d)when s=0
[tex]\begin{gathered} m=8-2s \\ m=8-2(0) \\ m=8-0 \\ m=8 \end{gathered}[/tex]I hope this helps you