Answer the questions below about the quadratic function.g(x) = 2x² + 20x - 52Does the function have a minimum or maximum value?MinimumMaximumWhat is the function's minimum or maximum value?Where does the minimum or maximum value occur?

Answer the questions below about the quadratic functiongx 2x 20x 52Does the function have a minimum or maximum valueMinimumMaximumWhat is the functions minimum class=

Respuesta :

[tex]g(x)=-2x^2+20x-52[/tex][tex]\begin{gathered} g(x)=ax^2+bx+c \\ \\ \text{Maximum:} \\ a<0 \\ \\ \text{Minimum:} \\ a>0 \end{gathered}[/tex]

In the given function g(x) has a= -2 (a< 0) it has a maximum.

To find the maximum value:

1. Find the value of x in the vertex:

[tex]\begin{gathered} x=-\frac{b}{2a} \\ \\ x=-\frac{20}{2(-2)}=-\frac{20}{-4}=5 \end{gathered}[/tex]

2. Evaluate the value of the function when x=5

[tex]\begin{gathered} g(5)=-2(5)^2+20(5)-52 \\ g(5)=-2(25)+100-52 \\ g(5)=-50+100-52 \\ g(5)=-2 \end{gathered}[/tex]

Then, the function's maximum value is -2

the maximum value occur when x= 5