Respuesta :

The resulting expression for the sum of the function is 2x^2 - x - 4

Sum of function

Given the following function as shown below;

f(x) = 4x - 4

g(x) = 2x^2 - 3x

We are to determine the composite function (f+g)(x)

Substitute

(f+g)(x) = f(x) + g(x)

(f+g)(x) =. 4x-4 + 2x^2 -3x

(f+g)(x) = 2x^2 - x - 4

Hence the resulting expression for the sum of the function is 2x^2 - x - 4

Learn more on sum of function here: https://brainly.com/question/11602229

#SPJ1

Answer:

(f + g)(x) = 2x² + x - 4

Step-by-step explanation:

f(x) = 4x - 4

g(x) = 2x² - 3x

(f + g)(x) is the sum of functions f(x) and g(x).

(f + g)(x) = f(x) + g(x)

(f + g)(x) = 4x - 4 + 2x² - 3x

Combine like terms.

(f + g)(x) = 2x² + x - 4