Hii! would anyone mind helping me out?

Find the center of this hyperbola

[tex]\large\boldsymbol{9x^2-y^2-72x+8y+119=0}[/tex]

[tex]\bigstar[/tex]

[tex]\underbrace[/tex]

Respuesta :

Answer:

(4, 4)

Step-by-step explanation:

This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.

[tex]\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1[/tex]

Match the values in this hyperbola to those of the standard form. The variable h represents the x-offset from the origin, k represents the y-offset from origin, a.

a = 1

b = 3

k = 4

h = 4

Thus,

[tex](x-4)^2 - \frac{(y-4)^2}{9} = 1[/tex]

The center of a hyperbola follows the form of (h, k). Substitute in the values of h and k.

= (4, 4)