Respuesta :

Answer:

[tex]\boxed {1)log_{b}(75) = 4.317}[/tex]

[tex]\boxed {2)ln(20) = 2.9957}[/tex]

Step-by-step explanation:

[tex]\textsf {Question l :}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(3) = 1.099}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(5) = 1.609}[/tex]

[tex]\textsf {Identities applied :}[/tex]

[tex]\boxed {log(ab) = loga + logb}[/tex]

[tex]\boxed {log(a)^{x} = xloga}[/tex]

[tex]\textsf {We can rewrite the problem as :}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(75)}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(25 \times 3)}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(5^{2} \times 3)}[/tex]

[tex]\longrightarrow \mathsf {log_{b}(5)^{2} + log_{b}(3)}[/tex]

[tex]\longrightarrow \mathsf {2log_{b}(5) + log_{b}(3)}[/tex]

[tex]\textsf {Now, substitute the values :}[/tex]

[tex]\longrightarrow \mathsf {2(1.609) + (1.099)}[/tex]

[tex]\longrightarrow \mathsf {3.218 + 1.099}[/tex]

[tex]\longrightarrow \mathsf {4.317}[/tex]

[tex]\boxed {log_{b}(75) = 4.317}[/tex]

[tex]\textsf {Question ll :}[/tex]

[tex]\longrightarrow \mathsf {ln(4) = 1.3863}[/tex]

[tex]\longrightarrow \mathsf {ln(5) = 1.6094}[/tex]

[tex]\textsf {Rewriting the problem :}[/tex]

[tex]\longrightarrow \mathsf {ln(20)}[/tex]

[tex]\longrightarrow \mathsf {ln(4 \times 5)}[/tex]

[tex]\longrightarrow \mathsf {ln(4) + ln(5)}[/tex]

[tex]\longrightarrow \mathsf {1.3863 + 1.6094}[/tex]

[tex]\longrightarrow \mathsf {2.9957}[/tex]

[tex]\boxed {ln(20) = 2.9957}[/tex]

Answer:

[tex]\sf \log_b(75)=4.317[/tex]

[tex]\sf \ln (20)=2.9957[/tex]

Step-by-step explanation:

Question 1

Given:

  [tex]\sf \log_b(3)=1.099[/tex]

  [tex]\sf \log_b(5)=1.609[/tex]

To evaluate [tex]\sf \log_b(75)[/tex],  replace 75 with (5 × 5 × 3):

[tex]\implies \sf \log_b(5 \cdot 5 \cdot 3)[/tex]

[tex]\textsf{Apply the Product log law}: \quad \log_axy=\log_ax + \log_ay[/tex]

[tex]\implies \sf \log_b5+\log_b5+\log_b3[/tex]

Substitute the given values to solve:

[tex]\implies \sf 1.609 + 1.609 + 1.099=4.317[/tex]

Question 2

Given:

  [tex]\sf \ln(4)=1.3863[/tex]

  [tex]\sf \ln(5)=1.6094[/tex]

To evaluate ln(20) replace 20 with (4 × 5):

[tex]\implies \sf \ln (4 \cdot 5)[/tex]

[tex]\textsf{Apply the Product log law}: \quad \ln xy=\ln x + \ln y[/tex]

[tex]\implies \sf \ln (4)+\ln (5)[/tex]

Substitute the given values to solve:

[tex]\implies \sf 1.3863+1.6094=2.9957[/tex]