Respuesta :

Part 1

[tex](g\circ h)(x)=g(x-4)=(x-4)^2 + 1=x^2 - 8x+16+1=\boxed{x^2 - 8x+17}[/tex]

Part 2

[tex](-\infty, \infty)[/tex]

The answers in the box are:

  • First box: [tex]\mathbf{x^2-8x+17}[/tex]
  • Second box: [tex]\mathbf{(-\infty,\infty)}[/tex].

Given that the functions are

[tex]g(x)=x^2+1[/tex]

[tex]h(x)=x-4[/tex]

Since clearly g(x) and h(x) exist for all real values of x so the domain of g(x) and h(x) both are all real numbers.

Now the composition of function is given by,

[tex](g\circ h)(x)=g(h(x))[/tex]

               [tex]=g(x-4)[/tex]

               [tex]=(x-4)^2+1[/tex]

               [tex]=x^2-8x+16+1[/tex], since we know that [tex](a-b)^2=a^2-2ab+b^2[/tex]

               [tex]=x^2-8x+17[/tex]

So, [tex](g\circ h)(x)=x^2-8x+17[/tex]

It is a polynomial function so it is defined for all real values of x.

Hence the domain of composition is all real numbers, that is [tex](-\infty,\infty)[/tex]

Learn more about Composition of functions here -

https://brainly.com/question/17299449

#SPJ10