The solution to the trigonometry identity is -sin^2(x) + sin(x) + 1 = -sin(x)
In trigonometry functions, the cosecant(csc) appears to be the reciprocal of the sine function.
Given that:
[tex]\mathbf{1- \dfrac{sin^2(x)}{1}+sin(x)=\dfrac{-1}{csc(x)}}[/tex]
[tex]\mathbf{- \dfrac{sin^2(x)}{1}+sin(x)=\dfrac{-1}{csc(x)}}[/tex]
[tex]\mathbf{- \dfrac{sin^2(x)}{2}+sin(x)+ \dfrac{cos^2x}{2}+\dfrac{1}{2}=-sin(x)}[/tex]
[tex]\mathbf{- sin^2(x)+sin(x)+1 = -sin (x)}[/tex]
Learn more about calculating trigonometry functions here:
https://brainly.com/question/1143565
SPJ1