Respuesta :

The solution to the trigonometry identity is -sin^2(x) + sin(x) + 1 = -sin(x)

What is sine and the cosecant trigonometry function?

In trigonometry functions, the cosecant(csc) appears to be the reciprocal of the sine function.

  • The trigonometry formula for sine is = opposite/hypotenuse,
  • Thus the cosecant(csc) will be hypotenuse/opposite.

Given that:

[tex]\mathbf{1- \dfrac{sin^2(x)}{1}+sin(x)=\dfrac{-1}{csc(x)}}[/tex]

[tex]\mathbf{- \dfrac{sin^2(x)}{1}+sin(x)=\dfrac{-1}{csc(x)}}[/tex]

[tex]\mathbf{- \dfrac{sin^2(x)}{2}+sin(x)+ \dfrac{cos^2x}{2}+\dfrac{1}{2}=-sin(x)}[/tex]

[tex]\mathbf{- sin^2(x)+sin(x)+1 = -sin (x)}[/tex]

Learn more about calculating trigonometry functions here:

https://brainly.com/question/1143565

SPJ1