Respuesta :

Answer:

[tex]-20\sqrt{3}-5\sqrt{2}[/tex]

Step-by-step explanation:

Given expression:

[tex]4 \sqrt{12}-\sqrt{50}-7\sqrt{48}[/tex]

Rewrite 12 as 4 · 3  and 50 as 25 · 2 and 48 as 16 · 3 :

[tex]=4 \sqrt{4 \cdot 3}-\sqrt{25 \cdot 2}-7\sqrt{16 \cdot 3}[/tex]

[tex]\textsf{Apply radical rule} \quad \sqrt{a \cdot b}=\sqrt{a}\sqrt{b} :[/tex]

[tex]=4 \sqrt{4}\sqrt{3}-\sqrt{25}\sqrt{2}-7\sqrt{16}\sqrt{3}[/tex]

As [tex]\sqrt{4}=2[/tex] and [tex]\sqrt{25}=5[/tex] and [tex]\sqrt{16}=4[/tex] then:

[tex]=4 \cdot 2 \sqrt{3}-5\sqrt{2}-7 \cdot 4\sqrt{3}[/tex]

Simplify:

[tex]=8\sqrt{3}-5\sqrt{2}-28\sqrt{3}[/tex]

Collect like terms:

[tex]=8\sqrt{3}-28\sqrt{3}-5\sqrt{2}[/tex]

Combine like terms:

[tex]=-20\sqrt{3}-5\sqrt{2}[/tex]