Respuesta :

[tex]~~~~~\sin 30^{\circ} = \dfrac{x}{6}\\\\\implies \dfrac 12 = \dfrac x6\\\\\implies x = \dfrac 62 \\\\\implies x= 3.0~ \text{cm}[/tex]

[tex]\huge\underline\mathcal{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}[/tex]

The question can be easily solved applying trigonometry ~

We know that ,

[tex]\bold{ \sin(\theta) = \frac{perpendicular}{hypotenuse}} \\ [/tex]

  • Given - θ = 30° and hypotenuse = 6cm

  • To find - the perpendicular , i.e. , value of x

Substituting the values in the formula of sin θ

[tex] \sin(30\degree) = \frac{x}{6} \\ [/tex]

now , we know that sin 30° = 1/2

[tex]\therefore \: \implies \frac{1}{2} = \frac{x}{6} \\ [/tex]

on cross multiplying ,

[tex]\implies \: 2x = 6 \\ [/tex]

dividing both sides of the equation by 2 ,

[tex] \implies \: \cancel \frac{2x}{2} = \cancel\frac{6}{2} \\ \\ \implies \: \boxed{x = 3 \: cm}[/tex]

hope helpful ~