Answer:
[tex]\sf \dfrac{7}{17}[/tex]
Step-by-step explanation:
Given information:
⇒ total number of crayons = 6 + 7 + 4 = 17
[tex]\sf Probability\:of\:an\:event\:occurring = \dfrac{Number\:of\:ways\:it\:can\:occur}{Total\:number\:of\:possible\:outcomes}[/tex]
[tex]\implies \sf P(red\:crayon) =\dfrac{\textsf{Number of red crayons}}{\textsf{Total number of crayons}}=\dfrac{6}{17}[/tex]
If the red crayon is put back in the bag, the drawing of the red crayon prior to drawing the blue crayon will not affect the probability of drawing a blue crayon.
[tex]\implies \sf P(blue\:crayon)=\dfrac{\textsf{Number of blue crayons}}{\textsf{Total number of crayons}}=\dfrac{7}{17}[/tex]