Respuesta :

the answer would be x^4 + 5x + 49
Answer:  The simplified expression is:
_______________________________________________________
    x² + 5x + 49  .
__________________________________________
Explanation:
___________________________________________________
Given:   (x² − 5x + 2) + (x² + 4x + 5) − (x² − 6x −42) ;
_____________________________________________
Start with adding the first two terms: 

______________________________________________
 (x² − 5x + 2) + (x² + 4x + 5) = 

      x² − 5x + 2 + x² + 4x + 5 = ?
______________________________________________
Combine the "like terms" :
______________________________________________
      x²  +  x²  = 2x² ;
     -5x + 4x =  - x
       +2 +5 = +7 
__________________________________
Rewrite as:
__________________________
   2x² − x + 7 ;
______________________
Now, rewrite the entire expression:
___________________________
2x² − x + 7 − (x² − 6x − 42);
___________________________
 Distribute the negative:
___________________________
Rewrite as: 
___________________________
2x² − x + 7 − 1(x² − 6x − 42) ;
_____________________________
Let us consider:
_______________________________
  -1(x² − 6x − 42) = -1x² + 6x + 42 ;
_________________________________
and rewrite the entire expression:
_________________________________
2x² − x + 7 − x² + 6x + 42 ;
_________________________________
Now, combine the "like terms" ; and simplify:
__________________________________________________________
   +2x² - x² = x² ;
     -x + 6x = + 5x ;
     +7 + 42 = + 49
__________________________________________________________
We have:    x² + 5x + 49 .
__________________________________________________________