Respuesta :
Hello, This is fine easy.
We have to calculate the value of reason.
an = ak . R ^ ( n - k )
We have :
a10 = 0,25
And
a8 = 64
Then follow:
a10 = a8 . R ^ (10-8)
0,25 = 64 . R ^ 2
0,25 / 64 = R^2
As 0,25 = 1 / 4
1 /4 / 64 = R^2
1 / 4 / 64 = 1/4 × 1 / 64
= 1 / 256
Then,
1/256 = R^2
R^2 = 1 / 256
R = √(1 / 256 )
R = √1 / √256
R = 1 / 16
Then , a9 = ?
a9 = a8 . R ^(9 -8)
a9 = 64 . ( 1 / 16 ) ^1
a9 = 64 . 1 / 16
a9 = 64 / 16
a9 = 4
This is the answer to the your question.
I hope this has helped
We have to calculate the value of reason.
an = ak . R ^ ( n - k )
We have :
a10 = 0,25
And
a8 = 64
Then follow:
a10 = a8 . R ^ (10-8)
0,25 = 64 . R ^ 2
0,25 / 64 = R^2
As 0,25 = 1 / 4
1 /4 / 64 = R^2
1 / 4 / 64 = 1/4 × 1 / 64
= 1 / 256
Then,
1/256 = R^2
R^2 = 1 / 256
R = √(1 / 256 )
R = √1 / √256
R = 1 / 16
Then , a9 = ?
a9 = a8 . R ^(9 -8)
a9 = 64 . ( 1 / 16 ) ^1
a9 = 64 . 1 / 16
a9 = 64 / 16
a9 = 4
This is the answer to the your question.
I hope this has helped
Answer:
The ninth term i.e [tex]a^9[/tex] is 4
Step-by-step explanation:
Given in G.P i.e geometric sequence
[tex]a^8=64\text{ and }a^{10}=0.25[/tex]
[tex]\text{we have to find the value of }a^9[/tex]
The recursive formula for G.P is
[tex]a^n=ar^{n-1}[/tex]
As [tex]a^8=64[/tex]
⇒ [tex]a^8=ar^{8-1}[/tex]
[tex]64=ar^7[/tex] → (1)
Also, [tex]a^{10}=0.25 [/tex]
⇒ [tex]a^{10}=ar^{10-1}[/tex]
[tex]0.25=ar^9[/tex] → (2)
Solving 1 and 2
[tex]\frac{ar^9}{ar^7}=\frac{0.25}{64}[/tex]
[tex]r^2=\frac{1}{256}[/tex]
[tex]r=\frac{1}{16}[/tex]
Now, [tex]a^9=ar^{9-1}=ar^8=ar^7.r=64\times \frac{1}{16}=4[/tex]
Hence, the ninth term is 4