Find the first derivative of the following:
[tex]y = x \times \sqrt[3]{x} [/tex]
then dy/dx=
a)
[tex] \sqrt[3]{x} [/tex]
b)
[tex] \frac{4}{3} \sqrt[3]{x} [/tex]
c)
[tex] \frac{4}{ \sqrt[3]{x {}^{2} } } [/tex]
d)
[tex]12 \sqrt[3]{x} [/tex]

*answer with steps, please​

Respuesta :

Consider the given function :

[tex]{:\implies \quad \sf y=x\sqrt[3]{x}}[/tex]

Before doing this question let's recall some basic formulae of calculus;

  • [tex]{\boxed{\bf{a^{m}\cdot{a^{n}}=a^{m+n}}}}[/tex]

  • [tex]{\boxed{\bf{\dfrac{d}{dx}(x^n)=n{x}^{n-1}}}}[/tex]

So, now let's move on to our question ;

[tex]{:\implies \quad \sf y=x\sqrt[3]{x}}[/tex]

Can be further written as ;

[tex]{:\implies \quad \sf y=x(x)^{\footnotesize \dfrac13}}[/tex]

Using the 1st identity can be written as ;

[tex]{:\implies \quad \sf y=x^{\footnotesize \dfrac43}}[/tex]

Now, differentiating both sides w.r.t.x ;

[tex]{:\implies \quad \sf \dfrac{d}{dx}(y)=\dfrac{4}{3}(x)^{\footnotesize \dfrac{4}{3}-1}}[/tex]

[tex]{:\implies \quad \sf \dfrac{dy}{dx}=\dfrac{4}{3}(x)^{\footnotesize \dfrac{4-3}{3}}}[/tex]

[tex]{:\implies \quad \sf \dfrac{dy}{dx}=\dfrac{4}{3}(x)^{\footnotesize \dfrac{1}{3}}}[/tex]

[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{\dfrac{dy}{dx}=\dfrac{4}{3}\sqrt[3]{x}}}}[/tex]

Hence, Option B) is correct