find the value of x in the triangle below

Answer:
⠀
Step-by-step explanation:
⠀
⠀
We'll solve this using the Pythagorean Theorem.
Let,
⠀
We know that,
[tex]{ \longrightarrow \pmb{ \qquad (AC) {}^{2} = (AB) {}^{2} +( BC) {}^{2} }}[/tex]
[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = (4) {}^{2} +( 8) {}^{2} }}[/tex]
[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = 16 +64 }}[/tex]
[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = 80 }}[/tex]
[tex]{ \longrightarrow \it\pmb{ \qquad x {} = \sqrt{80} }}[/tex]
⠀
Therefore,
The figure is a right angled triangle , where the value 4 is perpendicular , 8 is base and x is hypotenuse.
So, By Pythagoras theorem
[tex]x {}^{2} = 4 {}^{2} + 8 {}^{2} [/tex]
[tex]x = \sqrt{16 + 64} [/tex]
[tex]x = \sqrt{80} [/tex]