Respuesta :

Answer:

  • √80 (Option A)

Step-by-step explanation:

  • This is Right Angled Triangle.

We'll solve this using the Pythagorean Theorem.

Let,

  • x be AC, where AC is the Hypotenuse.

  • 4 be AB, where AB is the Perpendicular.

  • 8 be BC, where BC is the Base

We know that,

[tex]{ \longrightarrow \pmb{ \qquad (AC) {}^{2} = (AB) {}^{2} +( BC) {}^{2} }}[/tex]

[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = (4) {}^{2} +( 8) {}^{2} }}[/tex]

[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = 16 +64 }}[/tex]

[tex]{ \longrightarrow \sf{ \qquad (x) {}^{2} = 80 }}[/tex]

[tex]{ \longrightarrow \it\pmb{ \qquad x {} = \sqrt{80} }}[/tex]

Therefore,

  • The value of x is √80
Ver imagen Аноним

The figure is a right angled triangle , where the value 4 is perpendicular , 8 is base and x is hypotenuse.

So, By Pythagoras theorem

[tex]x {}^{2} = 4 {}^{2} + 8 {}^{2} [/tex]

[tex]x = \sqrt{16 + 64} [/tex]

[tex]x = \sqrt{80} [/tex]