Respuesta :

The midsegment divides the trapezoid into two equal segments

The length of the midsegment is 6.23 units

How to determine the length of the midsegment

The vertices are given as:

A(0, 0), B(2, 5), C(3, 5), and D(8, 0)

Start by calculating the lengths of AB and CD using the following distance formula

[tex]d =\sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]

So, we have:

[tex]AB =\sqrt{(2 -0)^2 + (5 -0)^2} = \sqrt{29}[/tex]

[tex]CD =\sqrt{(8 -3)^2 + (0 -5)^2} = \sqrt{50}[/tex]

The length of the midsegment is then calculated as:

[tex]L = \frac{1}{2} * (AB + CD)[/tex]

So, we have:

[tex]L = \frac{1}{2} * (\sqrt{29} + \sqrt{50})[/tex]

Add the radicals

[tex]L = \frac{1}{2} * 12.46[/tex]

[tex]L = 6.23[/tex]

Hence, the length of the midsegment is 6.23 units

Read more about midsegments at:

https://brainly.com/question/7423948