Respuesta :

Answer:

Explanation:

W = Fd = 310(210) = 65,100 J

W = KE = ½mv²

v = √(2KE/m) = √(2(65100)/132) = 31.40642... = 31.4 m/s

W = PE = mgh = mgdsinθ

d = W/mgsinθ = 65100/(132(9.81)sin23) = 128.66488... = 129 m

Abu99

Answer:

a. WD = 65100 J

b. v = 31.4 m/s

c. 129 m

Explanation:

WD = work done (Nm or J)

F = force (N) = 310

d = distance (m) = 210

P = power (W or J/s)

m = mass (kg) = 132

a = acceleration (m/s²)

v = final velocity (m/s)

u = initial velocity (m/s)

s = displacement (m) = 210

[tex]d_{i}[/tex] = distance up incline (m)

Θ = angle of incline (°) = 23

g = gravity (m/s²) = 9.81

O = opposite

H = hypotenuse

Formulas:

WD = F.d

F (or net F) = ma

v² = u² + 2as

sin(Θ) = O/H

a.

WD = F.d

WD = 310 × 210

WD = 65100 J

b.

Ignoring friction and air resistance:

net F = 310

F = ma:

310 = 132a

a = 2.34848485

v² = u² + 2as:

v² = (0)² + 2(2.348...)(210)

v² = 986.363637

v = 31.4064267 → 31.4 m/s

c.

Coasting means no cycling by cyclist so no F produced up the incline

On incline:

F parallel to incline due to gravity = -132g.sin(23)

F parallel to incline due to gravity = -132(9.81)(0.390731128)

F parallel to incline due to gravity = -505.965552

F = ma:

net F parallel to incline = -505.965552

[tex]-505.965552 = 132a_{i}[/tex]

[tex]a_{i} = -3.83307236[/tex]

[tex](v_{i}) ^{2} = (u_{i})^{2} + 2(a_{i})(d_{i}):[/tex]

[tex]u_{i} = 31.4064267[/tex]

[tex]v_{i} = 0[/tex]

[tex](0)^{2} = (31.4064267)^{2} + 2(-3.83307236)(d_{i}) \\\\ 0 = 986.363638 - 7.66614472(d_{i}) \\\\ 7.66614472(d_{i}) = 986.363638 \\\\ d_{i} = \frac{986.363638}{7.66614472} \\\\ d_{i} = 128.664886[/tex] → 129 m