Answer:
The proof of area is [tex]\frac{3\sqrt{3} }{2} (p^{2}-1)x^{2}[/tex] is done
Step-by-step explanation:
Area of regular hexagon[tex]=6\times[/tex] Area of equilateral triangle
Area of regular hexagon ABCDEF with side [tex]x[/tex]
[tex]=6\times \frac{\sqrt{3} }{4} x^{2} \\\\= \frac{3\sqrt{3} }{2} x^{2}[/tex]
Area of regular hexagon FGHIJK with side [tex]px[/tex]
[tex]= \frac{3\sqrt{3} }{2} (px)^{2}\\\\=\frac{3\sqrt{3} }{2} p^{2}x^{2}[/tex]
Area of shaded region
[tex]=\frac{3\sqrt{3} }{2} p^{2}x^{2}-\frac{3\sqrt{3} }{2} x^{2}\\\\=\frac{3\sqrt{3} }{2} (p^{2}-1)x^{2}[/tex]