Respuesta :
The friction loss in the system is 3.480 kilowatts.
Procedure - Friction loss through a pump
Pump model
Let suppose that the pump within a distribution system is an open system at steady state, whose mass and energy balances are shown below:
Mass balance
[tex]\dot m_{in}-\dot m_{out} = 0[/tex] (1)
[tex]\dot m_{in} = \frac{\dot V_{in}}{\nu_{in}}[/tex] (2)
[tex]\dot m_{out} = \frac{\dot V_{out}}{\nu_{out}}[/tex] (3)
Energy balance
[tex]\eta \cdot \dot W_{el} + \dot m_{in}\cdot (h_{in}-h_{out}) - \dot W_{f} = 0[/tex] (4)
Where:
- [tex]\dot m_{in}[/tex] - Inlet mass flow, in kilograms per second.
- [tex]\dot m_{out}[/tex] - Outlet mass flow, in kilograms per second.
- [tex]\dot V_{in}[/tex] - Inlet volume flow, in cubic meters per second.
- [tex]\dot V_{out}[/tex] - Outlet volume flow, in cubic meters per second.
- [tex]\nu_{in}[/tex] - Inlet specific volume, in cubic meters per kilogram.
- [tex]\nu_{out}[/tex] - Outlet specific volume, in cubic meters per kilogram.
- [tex]\eta[/tex] - Pump efficiency, no unit.
- [tex]\dot W_{el}[/tex] - Electric motor power, in kilowatts.
- [tex]h_{in}[/tex] - Inlet specific enthalpy, in kilojoules per kilogram.
- [tex]h_{out}[/tex] - Outlet specific enthalpy, in kilojoules per kilogram.
- [tex]\dot W[/tex] - Work losses due to friction, in kilowatts.
Data from steam tables
From steam tables we get the following water properties at inlet and outlet:
Inlet
[tex]p = 100\,kPa[/tex], [tex]T = 25\,^{\circ}C[/tex], [tex]\nu = 0.001003\,\frac{kJ}{kg}[/tex], [tex]h = 104.927\,\frac{kJ}{kg}[/tex], Subcooled liquid
Outlet
[tex]p = 300\,kPa[/tex], [tex]T = 25\,^{\circ}C[/tex], [tex]\nu = 0.001003\,\frac{kJ}{kg}[/tex], [tex]h = 105.128\,\frac{kJ}{kg}[/tex], Subcooled liquid
Calculation of the friction loss in the system
If we know that [tex]\dot V_{in} = 0.05\,\frac{m^{3}}{s}[/tex], [tex]\nu_{in} = 0.001003\,\frac{m^{3}}{kg}[/tex], [tex]h_{in} = 104.927\,\frac{kJ}{kg}[/tex], [tex]h_{out} = 105.128\,\frac{kJ}{kg}[/tex], [tex]\eta = 0.90[/tex] and [tex]\dot W_{el} = 15\,kW[/tex], then the friction loss in the system is:
[tex]\dot W_{f} = \frac{\dot V_{in}}{\nu_{in}}\cdot (h_{in} - h_{out}) + \eta \cdot \dot W_{el}[/tex]
[tex]\dot W_{f} = \left(\frac{0.05\,\frac{m^{3}}{s} }{0.001003\,\frac{m^{3}}{kg} } \right)\cdot \left(104.927\,\frac{kJ}{kg}-105.128\,\frac{kJ}{kg}\right) + (0.90)\cdot (15\,kW)[/tex]
[tex]\dot W_{f} = 3.480\,kW[/tex]
The friction loss in the system is 3.480 kilowatts. [tex]\blacksquare[/tex]
To learn more on pumps, we kindly invite to check this verified question: https://brainly.com/question/544887