Respuesta :

[tex]\large\underline{\sf{Solution-}}[/tex]

Given that,

[tex]\sf\sqrt{5+2\sqrt6}[/tex]

We can rewrite it as,

[tex]\sf\longmapsto\sqrt{5+2(\sqrt2)(\sqrt3)}[/tex]

[tex]\sf\longmapsto\sqrt{2+3+2(\sqrt2)(\sqrt3)}[/tex]

So,

[tex]\sf\longmapsto\sqrt{(\sqrt2)^2+(\sqrt3)^2+2(\sqrt2)(\sqrt3)}[/tex]

We know that,

[tex]\sf\red⇛ a^2+b^2+2ab=(a+b)^2[/tex]

Here, a = √2 and b=√3.

So,

[tex]\sf\longmapsto\sqrt{(\sqrt2)^2+(\sqrt3)^2+2(\sqrt2)(\sqrt3)}[/tex]

[tex]\sf\longmapsto\sqrt{(\sqrt2+\sqrt3)^2}[/tex]

So, the square root and the square get cancelled. So,

[tex]\sf\longmapsto\sqrt{(\sqrt2+\sqrt3)^2}[/tex]

[tex]\sf\longmapsto\pm\sqrt2+\sqrt3[/tex]

Therefore,

[tex]\bf\sqrt{5+2\sqrt6}=\pm\sqrt2+\sqrt3[/tex]