Respuesta :
Hello izzy44409!
[tex] \huge \boxed{\mathbb{QUESTION} \downarrow}[/tex]
2(3x - 1) + 2(2x² + x + 9)
[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]
[tex]2(3x - 1) + 2(2x {}^{2} + x + 9)[/tex]
Let's solve the 1st term first ⇨ 2 (3x - 1).
[tex]2(3x - 1) \\ = \underline{\underline{ 6x - 2}}[/tex]
Method used :-
- Distributive property.
Now, simplify the 2nd term ⇨ 2(2x² + x + 9)
[tex]2(2 {x}^{2} + x + 9) \\ = \underline{ \underline {4 x^{2} + 2x + 18}}[/tex]
Method used :-
- Distributive property.
Now, bring the 2 simplified terms together.
[tex]2(3x - 1) + 2(2x {}^{2} + x + 9) \\ = \underline{ \underline {6x - 2 + 4 x^{2} + 2x + 18}}[/tex]
Now, combine the like terms & simplify again.
[tex]6x - 2 + 4 x^{2} + 2x + 18 \\ = 6x + 2x - 2 + 18 + {4x}^{2} \\ = \underline{\underline{ \bf 8x + 16 + 4 {x}^{2} }}[/tex]
You can further simplify it by bring out the common factors...
[tex]8x + 16 + 4 {x}^{2} \\ = \large\boxed{\boxed{\bf 4\left(x^{2}+2x+4\right) }}[/tex]
__________________
Hope it'll help you!
ℓu¢αzz ッ
Answer:
[tex]\boxed{\boxed{\sf 4x^2+8x+16}}[/tex]
Step-by-step explanation:
[tex]\sf 2(3x - 1) + 2(2x^2 + x + 9)[/tex]
[tex]\boxed{\sf Apply \: Distributive\: property:}[/tex]
[tex]\longmapsto[/tex] [tex]\sf 2(3x - 1)[/tex]
[tex]\longmapsto[/tex] [tex]\sf 6x-2[/tex]
[tex]\longmapsto[/tex] [tex]\sf 2\left(2x^2+x+9\right)[/tex]
[tex]\longmapsto[/tex] [tex]\sf 4x^2+2x+18[/tex]
[tex]\longmapsto[/tex] [tex]\sf 6x-2+4x^2+2x+18[/tex]
[tex]\boxed{\sf Combine\: Like \:Terms:}[/tex]
[tex]\longmapsto[/tex] [tex]\sf (4x^2)+(6x+2x)+(-2+18)[/tex]
[tex]\longmapsto[/tex] [tex]\sf 4x^2+8x+16[/tex]
________________________