Respuesta :

The answer is 17/33.

The repeating decimal [tex]0.5151....[/tex] as a fully simplified fraction will be   [tex]\frac{17}{33}[/tex].

What is repeating decimal ?

Repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic and the infinitely repeated portion is not zero.

We have,

Repeating decimal [tex]0.5151.....[/tex] .

Let,

[tex]x=0.51[/tex]    [tex]..........(i)[/tex]

As it have two decimal, so multiply on both sides by [tex]100[/tex],

[tex]100x=51.51[/tex]    [tex]..........(ii)[/tex]

Now, subtract equation [tex](i)[/tex] from equation [tex](ii)[/tex],

[tex]100x-x=51.51-0.51[/tex]

[tex]99x=51[/tex]

[tex]x=\frac{51}{99}[/tex]

Now, to simplify it more divide numerator and denominator from [tex]3[/tex],

We get ,

[tex]x=\frac{17}{33}[/tex]

So, the simplified fraction of the given  repeating decimal is [tex]\frac{17}{33}[/tex].

Hence, we can say that the repeating decimal [tex]0.5151....[/tex] as a fully simplified fraction will be   [tex]\frac{17}{33}[/tex].

To know more about repeating decimal click here

https://brainly.com/question/5194080

#SPJ3