Respuesta :

GCF is 3x

3x(x^2 + 5x +6)=0
3x(x +3)(x +2)=0

3x = 0,  x + 3= 0 ,  x + 2 = 0
   x = 0,    x = -3,   x = -2

Answer:

[tex]x=0, multiplicity\ 1\\x=-2, multiplicity\ 1\\x=-3, multiplicity\ 1[/tex]

Step-by-step explanation:

we have

[tex]f(x)=3x^{3}+15x^{2} +18x[/tex]

To find the zeros of the function equate to zero

[tex]3x^{3}+15x^{2} +18x=0[/tex]

Factor the term 3x

[tex]3x(x^{2}+5x+6)=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}+5x+6=0[/tex]  

so

[tex]a=1\\b=5\\c=6[/tex]

substitute in the formula

[tex]x=\frac{-5(+/-)\sqrt{5^{2}-4(1)(6)}} {2(1)}[/tex]

[tex]x=\frac{-5(+/-)\sqrt{25-24}} {2}[/tex]

[tex]x=\frac{-5(+/-)1} {2}[/tex]

[tex]x=\frac{-5+1} {2}=-2[/tex]

[tex]x=\frac{-5-1} {2}=-3[/tex]

so

[tex]x^{2}+5x+6=(x+2)(x+3)[/tex]  

substitute

[tex]3x(x^{2}+5x+6)=3x(x+2)(x+3)[/tex]

The zeros are

[tex]x=0, multiplicity\ 1\\x=-2, multiplicity\ 1\\x=-3, multiplicity\ 1[/tex]