Respuesta :
Answer:
Use the following identity:
- a³ + b³ + c³ = 3abc if a + b + c = 0
Substitute:
- a = 3x, b = 5y, c = 4z
and get:
- (3x)³ + (5y)³ + (4z)³ = 3(3x)(5y)(4z)
- 27x³ + 125y³ + 64z³ = 180xyz
We know
If a+b+c=0
[tex]\boxed{\sf a^3+b^3+c^3=3abc}[/tex]
[tex]\\ \sf\longmapsto 3x^3+5y^3+4z^3=3(3x)(5y)(4z)[/tex]
- Simplify
[tex]\\ \sf\longmapsto 27x^3+125y^3+64z^3=180xyz[/tex]
Hence proved