The speed of an object undergoing constant acceleration increases from 8.0 meters per second to 16.0 meters per second in 10. seconds. How far does the object travel during the 10. seconds?

Respuesta :

Answer:

[tex] \boxed{d = 120\: meters} [/tex]

Explanation:

Given:

  • [tex] v_{0} [/tex] = 8.0 m/s
  • [tex] v [/tex] = 16.0 m/s
  • [tex] t [/tex] = 10 seconds
  • [tex] d [/tex] = ?

We can use this equation with the variables given to solve:

[tex] d \: = \frac{t \: (v + v_{0})}{2}[/tex] →

[tex] d \: = \frac{(10s) \: ((16.0 \: m/s) + (8.0 \: m/s))}{2} [/tex] →

[tex] d \: = \frac{(10s) \: (24 \: m/s)}{2} [/tex] →

[tex] d \: = \frac{(10 \: s \: • \: 24 \: m/s)}{2} [/tex] →

[tex] d \: = \frac{240 \: m}{2} [/tex] →

[tex] d \: = 120 \: m [/tex]

The distance traveled by the object in 10 seconds is 120 meters.

Given to us,

Final velocity of the object, [tex]v= 16\ meter/sec[/tex]

Initial velocity of the object, [tex]u= 8\ meter/sec[/tex]

Time for traveling, [tex]t= 10\ sec[/tex]

Using the first equation of motion,  we can find out acceleration of the object [tex]a[/tex],

[tex]v=u+at\\16=8+a\times 10\\a= 0.8\ meter/sec^2[/tex]

Now using the second equation of motion and putting the value of [tex]a[/tex],

The distance[tex](S)[/tex] traveled by the object ,

[tex]\begin{aligned}S&= ut+\frac{1}{2}at^2\\&= 8\times 10+ \frac{1}{2}\times 0.8\times 10^2\\&= 120\ meters \\\end{aligned}[/tex]

Hence,The distance traveled by the object in 10 seconds is 120 meters.

For more information, visit:

https://brainly.com/question/8898885