Answer:
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
Uniform distribution between 15 and 20 minutes.
This means that [tex]a = 15, b = 20[/tex]
What is the probability that a randomly selected application from this distribution took less than 18 minutes?
[tex]P(X < 18) = \frac{18 - 15}{20 - 15} = 0.6[/tex]
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.