Suppose that you add 24.3 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 3.14 oC compared to pure benzene. What is the molar mass (in g/mol) of the unknown compound

Respuesta :

Solution :

We know that :

[tex]$\Delta T_f = k_f.m$[/tex]  and   [tex]$m=\frac{w_2}{m_2 \times w_1}$[/tex]

Then, [tex]$\Delta T_f = k_f.\frac{w_2}{m_2.w_1}$[/tex]   ..................(1)

Where,

[tex]w_1[/tex] = amount of solvent (in kg)

[tex]w_2[/tex] = amount of solute (in kg)

[tex]m_2[/tex] = molar mass of solute (g/mole)

[tex]m[/tex] = molality of solution (mole/kg)

Given :

[tex]\Delta T_f[/tex] = [tex]3.14\ ^\circ C[/tex],   [tex]k_f= 5.12\ ^\circ C/m[/tex]

                              [tex]=5.12 \ ^\circ C/mole/kg[/tex]

                              [tex]=5.12 \ ^\circ C \ kg/mole[/tex]

[tex]w_1[/tex] = 0.250 kg,  [tex]w_2[/tex] = 24.3 g

Then putting this values in the equation is (1),

[tex]$3.14 = \frac{5.12 \times 24.3}{m_2 \times 0.250}$[/tex]

[tex]$m_2 = \frac{5.12 \times 24.3}{3.14 \times 0.250}$[/tex]

[tex]m_2= 158.49[/tex]  g/mole

So, the molar mass of the unknown compound is 158.49 g/mole.