Solution :
We know that :
[tex]$\Delta T_f = k_f.m$[/tex] and [tex]$m=\frac{w_2}{m_2 \times w_1}$[/tex]
Then, [tex]$\Delta T_f = k_f.\frac{w_2}{m_2.w_1}$[/tex] ..................(1)
Where,
[tex]w_1[/tex] = amount of solvent (in kg)
[tex]w_2[/tex] = amount of solute (in kg)
[tex]m_2[/tex] = molar mass of solute (g/mole)
[tex]m[/tex] = molality of solution (mole/kg)
Given :
[tex]\Delta T_f[/tex] = [tex]3.14\ ^\circ C[/tex], [tex]k_f= 5.12\ ^\circ C/m[/tex]
[tex]=5.12 \ ^\circ C/mole/kg[/tex]
[tex]=5.12 \ ^\circ C \ kg/mole[/tex]
[tex]w_1[/tex] = 0.250 kg, [tex]w_2[/tex] = 24.3 g
Then putting this values in the equation is (1),
[tex]$3.14 = \frac{5.12 \times 24.3}{m_2 \times 0.250}$[/tex]
[tex]$m_2 = \frac{5.12 \times 24.3}{3.14 \times 0.250}$[/tex]
[tex]m_2= 158.49[/tex] g/mole
So, the molar mass of the unknown compound is 158.49 g/mole.