Respuesta :

Answer:

[tex]20^{\circ}[/tex]

Step-by-step explanation:

In any right triangle, the cosine of an angle is equal to its adjacent side divided by the hypotenuse.

Let the angle we want to find be [tex]\theta[/tex]. [tex]\theta[/tex]'s adjacent side is 49 and the hypotenuse of the triangle is 52.

Therefore, we have the equation:

[tex]\cos \theta=\frac{49}{52}[/tex]

Take the inverse cosine of both sides:

[tex]\arccos (\cos \theta)=\arccos(\frac{49}{52})[/tex]

Simplify using [tex]\arccos (\cos \theta)=\theta \text{ for }\theta \in (0, 180^{\circ})[/tex]:

[tex]\theta=\arccos(\frac{49}{52}),\\\theta=19.557214,\\\theta\approx \boxed{20^{\circ}}[/tex]