Respuesta :
Answer:
[tex] \displaystyle D) {x}^{5} + \rm C[/tex]
Step-by-step explanation:
we would like to integrate the following Integral:
[tex] \displaystyle \int 5 {x}^{4} \, dx [/tex]
well, to get the constant we can consider the following Integration rule:
[tex] \displaystyle \int c{x} ^{n} \, dx = c\int {x}^{n} \, dx[/tex]
therefore,
[tex] \displaystyle 5\int {x}^{4} \, dx [/tex]
recall exponent integration rule:
[tex] \displaystyle \int {x} ^{n} \, dx = \frac{ {x}^{n + 1} }{n + 1} [/tex]
so let,
- [tex]n = 4[/tex]
Thus integrate:
[tex] \displaystyle = 5\left( \frac{ {x}^{4+ 1} }{4 + 1} \right)[/tex]
simplify addition:
[tex] \displaystyle = 5\left( \frac{ {x}^{5} }{5} \right)[/tex]
reduce fraction:
[tex] \displaystyle = {x}^{5} [/tex]
finally we of course have to add the constant of integration:
[tex] \displaystyle \boxed{ {x}^{5} + \rm C}[/tex]
hence,
our answer is D)