Respuesta :
Answer:
- 10 and 4
Step-by-step explanation:
The first term is a, common difference is d.
The 6th term:
- a + 5d = 30
The 12th term:
- a + 11d = 54
Solve the system by elimination:
- 11d - 5d = 54 - 30
- 6d = 24
- d = 4
Find a:
- a + 5*4 = 30
- a + 20 = 30
- a = 10
Answer:
Given :-
6th term = 30
12th term = 54
To Find :-
First term
Common difference
Solution :-
We know that
[tex] \sf \: a_{n} = a + (n - 1)d[/tex]
For 6th term
[tex] \sf \: 30 = a + (6 - 1)d[/tex]
[tex] \sf \: 30 = a + 5d[/tex]
For 12th term
[tex]\sf \: a_{n} = a + (n - 1)d[/tex]
[tex] \sf \: 54 = a + (12 - 1)d[/tex]
[tex] \sf \: 54 = a + 11d[/tex]
On subtracting both
[tex] \sf \: 54 - 30 = a + 11d - (a + 5d)[/tex]
[tex] \sf \: 54 - 30 = a + 11d - a - 5d[/tex]
[tex] \sf \: 24 = 6d[/tex]
[tex] \sf \: \dfrac{24}{6} = d[/tex]
[tex] \sf \: 4 = d[/tex]
Now
Using 2
[tex] \sf \: 54 = a + 11d[/tex]
[tex] \sf \: 54 = a + 11(4)[/tex]
[tex] \sf \: 54 = a + 44[/tex]
[tex] \sf \: 54 - 44 = a[/tex]
[tex] \sf \: 10 = a[/tex]