Respuesta :
Hey there!
We are given two functions - one is Exponential while the another one is Linear.
[tex] \large{ \begin{cases} f(x) = {4}^{x} - 8 \\ g(x) = 5x + 6 \end{cases}}[/tex]
1. Operation of Function
- (f+g)(x) is a factored form of f(x)+g(x). We can common factor out x. Therefore:
[tex] \large{(f + g)(x) = f(x) + g(x)}[/tex]
2. Substitution
- Next, we substitute f(x) = 4^x+8 and g(x) = 5x+6.
[tex] \large{(f + g)(x) = ( {4}^{x} - 8) + (5x + 6)}[/tex]
3. Evaluate/Simplify
- Cancel out the brackets and combine like terms.
[tex] \large{(f + g)(x) = {4}^{x} - 8 + 5x + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 8 + 6} \\ \large{(f + g)(x) = {4}^{x} + 5x - 2}[/tex]
4. Final Answer
- (f+g)(x) = 4^x+5x-2