Respuesta :

Answer:

Step-by-step explanation:

1). If the given triangles are similar their corresponding sides will be proportional.

[tex]\frac{8}{a}= \frac{8}{12}=\frac{5}{b}[/tex]

[tex]\frac{8}{a}= \frac{8}{12}[/tex]

[tex]a=\frac{12\times 8}{8}[/tex]

[tex]a=12[/tex]

[tex]\frac{8}{12}=\frac{5}{b}[/tex]

[tex]b=\frac{5\times 12}{8}[/tex]

[tex]b=7.5[/tex]

2). By using proportional relationship in the similar polygons,

[tex]\frac{3}{c}=\frac{6}{8}[/tex]

[tex]c=\frac{8\times 3}{6}[/tex]

[tex]c=4[/tex]

d = 8

c = e = 4

3). If the pentagons are similar their corresponding sides will be proportional.

[tex]\frac{6}{g}=\frac{8}{18}=\frac{10}{h}= \frac{8}{I}=\frac{6}{f}[/tex]

[tex]\frac{6}{g}=\frac{8}{18}[/tex]

[tex]g=\frac{18\times 6}{8}[/tex]

[tex]g=13.5[/tex]

[tex]\frac{8}{18}=\frac{10}{h}[/tex]

[tex]h=22.5[/tex]

[tex]\frac{8}{18}=\frac{6}{f}[/tex]

[tex]f=13.5[/tex]

[tex]\frac{8}{18}= \frac{8}{I}[/tex]

[tex]I=18[/tex]