What’s the answers?

Answer:
Step-by-step explanation:
1). If the given triangles are similar their corresponding sides will be proportional.
[tex]\frac{8}{a}= \frac{8}{12}=\frac{5}{b}[/tex]
[tex]\frac{8}{a}= \frac{8}{12}[/tex]
[tex]a=\frac{12\times 8}{8}[/tex]
[tex]a=12[/tex]
[tex]\frac{8}{12}=\frac{5}{b}[/tex]
[tex]b=\frac{5\times 12}{8}[/tex]
[tex]b=7.5[/tex]
2). By using proportional relationship in the similar polygons,
[tex]\frac{3}{c}=\frac{6}{8}[/tex]
[tex]c=\frac{8\times 3}{6}[/tex]
[tex]c=4[/tex]
d = 8
c = e = 4
3). If the pentagons are similar their corresponding sides will be proportional.
[tex]\frac{6}{g}=\frac{8}{18}=\frac{10}{h}= \frac{8}{I}=\frac{6}{f}[/tex]
[tex]\frac{6}{g}=\frac{8}{18}[/tex]
[tex]g=\frac{18\times 6}{8}[/tex]
[tex]g=13.5[/tex]
[tex]\frac{8}{18}=\frac{10}{h}[/tex]
[tex]h=22.5[/tex]
[tex]\frac{8}{18}=\frac{6}{f}[/tex]
[tex]f=13.5[/tex]
[tex]\frac{8}{18}= \frac{8}{I}[/tex]
[tex]I=18[/tex]