or Java,
program to perform this computa
3.
Isaac Newton devised a clever method to casily approximate the square root of a number without having
to use a calculator that has the square root function. Describe this method with illustration​

Respuesta :

Answer:

The illustration in Java is as follows:

import java.util.*;

import java.lang.Math.*;

class Main{

public static void main (String[] args){

 Scanner input = new Scanner(System.in);

 double num, root, temp;

 num = input.nextDouble();

 temp = num;

 while (true){

  root = 0.5 * ( (num / temp)+temp);

  if (Math.abs(root - temp) < 0.00001){

   break;   }

  temp = root;  }

 System.out.println("Root: "+root);

}}

Explanation:

This declares all necessary variables

 double num, root, temp;

This gets input for num (i.e the number whose square root is to be calculated)

 num = input.nextDouble();

This saves the input number to temp

 temp = num;

This loop is repeated until it is exited from within the loop

 while (true){

Calculate temporary square root

  root = 0.5 * ( (num / temp)+temp);

The loop is exited, if the absolute difference between the root and temp is less than 0.00001

  if (Math.abs(root - temp) < 0.00001){

   break;   }

Save the calculated root to temp

  temp = root;  }

This prints the calculated root

 System.out.println("Root: "+root);