Respuesta :

[tex]\sf \bf {\boxed {\mathbb {TO\:FIND:}}}[/tex]

The measures of [tex]x[/tex] and [tex]y[/tex].

[tex]\sf \bf {\boxed {\mathbb {SOLUTION:}}}[/tex]

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {x\:=\: 210°\:and\:\:y\:=\: -30°}}}}}}[/tex]

[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:EXPLANATION:}}}[/tex]

An exterior angle of a triangle is equal to sum of two opposite interior angles.

And so we have,

[tex] 40° = 70° + y[/tex]

[tex]➪ \: y= 40° - 70°[/tex]

[tex]➪ \: y = - 30°[/tex]

Also,

[tex]\sf\pink{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]

[tex]y[/tex] + [tex]x[/tex] = [tex]180°[/tex]

[tex]➪ \: -30° + x= 180°[/tex]

[tex]➪ \:x = 180° + 30°[/tex]

[tex]➪ \:x = 210°[/tex]

[tex]\sf\purple{Therefore,\:the\:measures \:of\:the\:unknown\:angles\:are\:"x=210°"\:and\:"y=-30°.}[/tex]

[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]