Respuesta :

GIVEN: The perimeter of triangle STU is  125.

The segments TW=21 cm

VW=30 cm

VT=24 cm

TO FIND: The length of the segment SU.

SOLUTION:

As corresponding sides must be same. so we have,

[tex]\frac{TV}{TS}=\frac{TW}{TU}\\\\ \frac{24}{TS}=\frac{21}{TU}\\\frac{TU}{TS}=\frac{7}{8}=k(say)\\[/tex]

Then, TU=7k and TS=8k

[tex]\frac{TV}{TS}=\frac{VW}{SU}\\\\ \frac{24}{TS}=\frac{30}{SU}\\\frac{24}{8k}=\frac{30}{SU}\\SU=10k[/tex]

As the perimeter of triangle STU is  125.

so,

8·k+7·k+10·k=125

⇒25.k=125

⇒k=5

Therefore, SU=10×5=50