Respuesta :
point (6, -5) => x = 6, y = -5
r =√6² +(-5)² = √(36+25)=√61
the exact value of :
cos 0 = x/r = 6/√61 = 6/61 √61
csc 0 = r/y = √61/(-5) = -1/5 √61
tan 0 = y/x = -5/6
Answer:
Solutions given:
(6,-5)=(x,y)
r=[tex]\sqrt{6²+(-5)²}=\sqrt{61}[/tex]
Now
Sin θ=[tex] \frac{y}{r}[/tex]=[tex] \frac{-5}{\sqrt{61}}[/tex]
Cosθ=[tex] \frac{x}{r}[/tex]=[tex] \frac{6}{\sqrt{61}}[/tex]
CSC θ=[tex] \frac{r}{y}[/tex]=[tex] \frac{\sqrt{61}}{-5}[/tex]
Tan θ=θ=[tex] \frac{y}{x}[/tex]=[tex] \frac{-5}{6}[/tex]
Note:
p=y
b=x
h=r