Respuesta :

point (6, -5) => x = 6, y = -5

r =√6² +(-5)² = √(36+25)=√61

the exact value of :

cos 0 = x/r = 6/√61 = 6/61 √61

csc 0 = r/y = √61/(-5) = -1/5 √61

tan 0 = y/x = -5/6

msm555

Answer:

Solutions given:

(6,-5)=(x,y)

r=[tex]\sqrt{6²+(-5)²}=\sqrt{61}[/tex]

Now

Sin θ=[tex] \frac{y}{r}[/tex]=[tex] \frac{-5}{\sqrt{61}}[/tex]

Cosθ=[tex] \frac{x}{r}[/tex]=[tex] \frac{6}{\sqrt{61}}[/tex]

CSC θ=[tex] \frac{r}{y}[/tex]=[tex] \frac{\sqrt{61}}{-5}[/tex]

Tan θ=θ=[tex] \frac{y}{x}[/tex]=[tex] \frac{-5}{6}[/tex]

Note:

p=y

b=x

h=r