Respuesta :

Answer:

tan 0 = -2.4

sin 0 = 0.42

Step-by-step explanation:

sec 0 = -13/12 => cos 0 = -12/13

cot 0 < 0 => tan 0 < 0

so, the angle is on second quadrant

=> tan 0 = -12/5 = -2.4

=> sin 0 = 5/12 = 0.42

msm555

Answer:

Solution given;

Sec θ=-[tex]\frac{13}{12}[/tex]

cotθ< 0,

It lies in second quadrant.

where sin and cosec is positive.

Now

[tex] \frac{1}{cosθ}=-\frac{13}{12}[/tex]

cosθ=[tex]\frac{12}{13}[/tex]

[tex]\frac{b}{h}[/tex]=[tex]\frac{12}{13}[/tex]

b=12

h=13

By using Pythagoras law

p=[tex] \sqrt{13²-12²}=5 [/tex]

Now

exact values of tan θ=[tex]\frac{p}{b}[/tex]=[tex]\frac{5}{12}[/tex]

since it lies in II quadrant

tan θ=-[tex]\frac{5}{12}[/tex]

and

sinθ=[tex]\frac{p}{h}[/tex]=[tex]\frac{5}{13}[/tex]

since it lies in II quadrant

sin θ=[tex]\frac{5}{13}[/tex]