Respuesta :
Answer:
tan 0 = -2.4
sin 0 = 0.42
Step-by-step explanation:
sec 0 = -13/12 => cos 0 = -12/13
cot 0 < 0 => tan 0 < 0
so, the angle is on second quadrant
=> tan 0 = -12/5 = -2.4
=> sin 0 = 5/12 = 0.42
Answer:
Solution given;
Sec θ=-[tex]\frac{13}{12}[/tex]
cotθ< 0,
It lies in second quadrant.
where sin and cosec is positive.
Now
[tex] \frac{1}{cosθ}=-\frac{13}{12}[/tex]
cosθ=[tex]\frac{12}{13}[/tex]
[tex]\frac{b}{h}[/tex]=[tex]\frac{12}{13}[/tex]
b=12
h=13
By using Pythagoras law
p=[tex] \sqrt{13²-12²}=5 [/tex]
Now
exact values of tan θ=[tex]\frac{p}{b}[/tex]=[tex]\frac{5}{12}[/tex]
since it lies in II quadrant
tan θ=-[tex]\frac{5}{12}[/tex]
and
sinθ=[tex]\frac{p}{h}[/tex]=[tex]\frac{5}{13}[/tex]
since it lies in II quadrant
sin θ=[tex]\frac{5}{13}[/tex]