Answer:
[tex]C=(0,0)[/tex]
[tex]F=(\pm 4,0)[/tex]
[tex]V=(\pm 5,0)[/tex]
Step-by-step explanation:
From the question we are told that:
The Equation
[tex]\frac{x^2}{9}*\frac{y^2}{25}[/tex]
Generally
From the Equation
[tex]a^2=25[/tex]
[tex]a=5\\b^2=9\\b=3[/tex]
Therefore
[tex]c=\sqrt{a^2-b^2}[/tex]
[tex]c=\sqrt{25-9}[/tex]
[tex]c=\sqrt{16}[/tex]
[tex]c=4[/tex]
Generally the equation for center is mathematically given by
[tex]C=(h,k)[/tex]
[tex]C=(0,0)[/tex]
Generally the equation for foci is mathematically given by
[tex]F=(h,k \pm c,0)[/tex]
[tex]F=(\pm 4,0)[/tex]
Generally the equation for vertice is mathematically given by
[tex]V=(h,k \pm a,0)[/tex]
[tex]V=(\pm 5,0)[/tex]